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Abstract

We report on the verification of the multiple scattering and thermal emission model PILOT-EX
described in a previous publication and extend the scope to include non-isothermal clouds. We
also verify the expressions leading to the thermal version of the radiative transfer equation, fill in
the details of the Gaussian spherical cloud formulation, describe methods for treating the
emissivity correction for limited bandpass instruments, and discuss the significance of the results
in terms of radiation contrast and aerosol-induced noise. We extend the model to include
arbitrary "embedded sources" and verify results against standards in the literature over a variety
of incident angles and demonstrate the significance of the results in computing infrared contrast
for use in imaging systems performance analysis. A major finding is that comparisons with
known (isothermal) solutions show agreement to within five significant figures for the case of
plane layers for both normal incidence and various slant path angles. Also, preliminary results
for the case of temperature stratification demonstrate a significant build up of radiance in the
(hotter) cloud interior, which leads to lower values of the apparent emissivity for non-isothermal
clouds.
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Preface

The main purpose of this report is to serve as a follow up to a previous report describing the
main features and utility of the PILOT-EX model used to generate exact solutions of the thermal
and optical versions of the radiative transfer equation. There are roughly seven topics covered,
some of which are ancillary to our previous report and others that can be treated as "stand alone"
but are nevertheless related to the previous work.
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Executive Summary

This report is the second in a series of reports documenting the development and verification of
the U.S. Army Research Laboratory PILOT-EX aerosol emissive effects model. An earlier report
covered the general concepts, a short theoretical development, and some preliminary verification
with limiting cases. In this we report we fill in many of the mathematical details of the model,
provide many more cases for verification, and extend the scope to include non-isothermal clouds.
We also verify the expressions leading to the thermal version of the radiative transfer equation,
fill in the details of the Gaussian cloud formulation, describe methods for treating the emissivity
correction for limited bandpass instruments, and discuss the significance of the results in terms
of radiation contrast and aerosol-induced noise, which we relate to the problem of computing
infrared contrast, familiar to the user community and used in imaging systems performance
analysis. On the theoretical development, we also extend the model to include arbitrary
"embedded" radiation sources and verify results against standards in the literature over a variety
of incident angles. This development could be of significance to modeling (hot) missile plume
signatures. A major theoretical finding is that comparisons with known (isothermal) solutions
show agreement to within five significant figures for the case of plane layers for both normal
incidence and various slant path angles. Also, preliminary results for the case of temperature
stratification demonstrate a significant build up of radiance in the (hotter) cloud interior, which
leads to lower values of the apparent emissivity for non-isothermal clouds. The details given here
along with those also given in our initial report offer a complete solution to the radiative transfer
equation for finite aerosol clouds of radial symmetry. The method addresses both aerosol thermal
emission as well as reflection, including all orders of multiple scattering. The method represents
exact solutions that compare favorably with other studies when applied to plane layers. We have
also demonstrated the significance of the results in systems evaluation through the effect on the
thermal derivative, or "radiation contrast," used in evaluating infrared scanning systems such as
the FLIR (forward-looking infrared). The methodology, per se, is applicable only to isothermal
clouds and isotropic scattering although these are not necessarily fundamental limitations on the
method. In yet another study we have extended the method to include non-isothermal clouds,
non-isotropic scattering, and other practical effects using various approximations.
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1. Introduction

The main purpose of this report is to serve as a follow up to a previous report, which described
the main features and utility of the PILOT-EX model used to generate exact solutions of the
thermal and optical versions of the radiative transfer equation [1 ]. There are roughly seven topics
covered, some of which are ancillary to our previous report and others that can be treated as
"stand alone" but are nevertheless related to the previous work. Sections 2, 4 and 5 are examples
of the former type which cover such details as; the formulation of the radiative transfer equation
to include natural thermal emission in section 2, the details of the Gaussian cloud formulation
borrowed from the COMBIC [2] model in section 3, and the verification of the model by
comparisons with other methods from the literature in section 5. In section 4 we give an example
of some interesting manifestations of the exact solutions which, when applied to Gaussian
clouds, give rise to various effects such as infrared "edge brightening," which is often associated
with visible wavelengths and natural clouds. We extend the scope of the study somewhat in
sections 6, 7, and 8, by addressing such issues as sensor bandpass effects and the definition of
apparent temperature in an obscuring environment (section 6), the concept of radiation contrast
for small differential signal analysis (section 7), and the effect of aerosol-induced path radiance
on system performance parameters such as the signal-to-noise ratio (section 8). In section 9 we
extend the formulation to include thermal stratification and define a practical, or "effective,"
emissivity to augment the previous work which treated the isothermal case only.

2. Thermal Version of the Radiative Transfer Equation

Although the thermal emission term discussed in section 3 of our previous paper [1] seems clear
and intuitive, there are some fundamental difficulties in justifying the form when used in realistic
atmospheric applications. The root of the difficulty lies in the use of the Blackbody function,
B(J,T), which requires that the system, atmosphere, and aerosol cloud be in strict
thermodynamic equilibrium, a condition certainly not valid for any realistic scenario that we
wish to address. To solve the non-equilibrium problem rigorously would require an in-depth look
at the kinetics of thermal motion and going far beyond the relatively simple Maxwell-Boltzman
treatment in the classical texts and certainly beyond the scope of the treatment here. Fortunately,
there is a practical alternative using the concept of "local thermodynamic equilibrium" which has
been rigorously established as valid for most atmospheric applications and which we will apply
here [3].

We begin with the differential version of the "standard" radiative transfer equation [4,5] for
computing the total radiance, I(r), including both the directly transmitted component and any
contributions to multiple in-scattering as (fig. 1):

I dI(r) =--(kabs + st)I(r) + at J .s .(r)

C(r) dr



where C(r) is the aerosol mass concentration and (kabs ,,sct) are, respectively, the mass absorption
and mass scattering coefficients which, in turn, are related to the more usual mass extinction
coefficient and single scattering albedo as

cc = kabs + CS~t (2a)

•sct
coo = k +c- (2b)

k abs +ac

which are the same definitions used in our previous paper, although we have altered the notation
slightly to conform with cited references. The major unknown in eq. (1) is the so-named (optical)
source function, Jsrc(r), which we ultimately seek to determine. The differential, dI(r), in eq. (1)
applies to a small cylindrical volume of differential thickness, dr, aligned along the propagation
vector, r, as sketched in figure (1).

in- scatter I(r+dr)

I(r)

Figure 1. Sketch demonstrating the differential radiative transfer equation.

In eq. (1), the first term on the right accounts for losses due to both absorption and out-scatter
(i.e., extinction) along the main beam and the second accounts for in-scatter of ambient radiative
sources (sky and surface) from all directions. Without committing to any specific mathematical
form, we next add an ad hoc emission term to the right side of eq. (1) as follows:

I dI(r) = -(kabs + SXt(r)+o tj., J(r)+ I diemns (3)

C(r) dr C(r) dr

where the added term, at this point, could include any type internal, or "embedded," radiation
source, either artificial or natural. For the special case treating thermal emission, it is plausible to
seek an expression defining an aerosol mass emission coefficient analogous to the mass
absorption and mass scattering coefficients such that

1 Ie
1 diemr = emB(X,T) (4)C(r) dr

where B(X,T) is the Planck Blackbody function, X is the wavelength, and T is the real (i.e.,
thermodynamic) temperature of the aerosol and can be a function of r if we include thermal
stratification as we will do in section 8. In eq. (4) we have introduced ees, as an ad hoc "mass
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emission coefficient" analogous to the mass absorption and mass scattering coefficients, kabs and
USCt. To specifically address the case of natural thermal emission, we next introduce the
equilibrium version of the radiative transfer equation as follows:

1 l1 diem
dI = _kabsB(X,T)+ 

(5)
C(r) dr C(r) dr

from which we can immediately reproduce a version of Kirchoff s relationship by invoking the
equilibrium condition as [dJ/dr=-O] to yield

1 dme = kabsB(X,,T) (6)
C(r) dr

which, from comparison with eq. (4), immediately requires the mass emission coefficient to be
equal to the mass absorption coefficient (i.e., eer=kabs), which is the essence of Kirchoff s Law
as applied to an aerosol medium.

We now formally apply the concept of local thermal equilibrium to the problem at hand by
inserting eq. (6) into eq. (3) to yield the following:

I dI(r) -(kb

C(r) dr)-(abs +±tC)i(r)+ act Jý(r)+ kab, B(,%.T) (7)

which, at this point, we cautiously refer to as an approximation and make explicit the fact that
the (new) source function, J'src, must now include not only the effect of multiple in-scatter from
external sources (as before), but also must include the multiple scattering contribution of the
internal thermal emissions which come from all parts of the cloud. Next we rewrite eq. (7) to
explicitly account for both an ambient (external in-scatter) part and an emissive (internal
scattering) part as

1 dI(r) -(C) dr - (kabs + SCt)I(r)+ ystt Jext(r)+ asctJint(r) + kabs B(X,T) (8)C(r) dr

which is consistent with the concept defining the total source function as the sum of the ambient
and emissive components [i.e., J'sr( r)= Jext( r) + Jint( r)] as was done our earlier work.

The degree to which the approximation implicit in eq. (8) holds depends upon the degree to
which the atmosphere/aerosol system is in local thermodynamic equilibrium. For the atmosphere
in general, many studies have shown the approximation to be valid up to an altitude of about
50,000 km, above which the Maxwell-Boltzman distribution is not necessarily maintained and,
thus, strict equilibrium as applied here becomes invalid. The inclusion of aerosol particles does
not present a big conceptual problem because it is the surrounding and intervening air molecules
that actually provide the thermal agitation required to maintain thermal equilibrium. However,
there is a need to assure good thermal mixing so that the temperature of the aerosol particles and
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the surrounding air molecules remain in near thermal equilibrium, which is a valid assumption
here if we assume the aerosol particles to be small. There may be other applications wherein the
accuracy of the above derivation may come into question; however, the final expressions as
given here have been more or less been accepted as valid approximations for most engineering
applications [6].

Owing to the linearity of the underlying expressions, it is clear from both a mathematical and
physical sense that the problem can be solved in two parts by separating the external and internal
contributions. That is, we can rewrite eq. (8) in the form of two differential equations that we
will refer to as the "optical" and "thermal" versions of the radiative transfer equation. That is,

optical version.

dI(t) = -I(-) + 0Je., (C) (9a)
d -

thermal version:

dI(') = - C0o)B (t;T) + o0 Jint (t)} (9b)
dxc

where we have also made two major substitutions; the first by using eq. (2) to insert the mass
extinction coefficient [a=kabs+Gsca] and albedo [Oo,=csca/(kabs+osca)], and the second to replace the
spatial variable, r, with the path optical thickness, r [=T(r,ro)]. Following conventional practice,
we now define the optical thickness between any two points in terms of the concentration path
integral as [note dT-'aC(r)dr]:

r r

(ro,r) = fdc' = fJcC(r')dr' (10)

where it is understood that the integration proceeds along the straight line path connecting the
two points r, and r.

For the special case, Jext =Jint =0, both expressions in eq. (9) can be integrated immediately to
yield the following "zeroth" order, or Beer's Law, solutions; that is,

optical version:

Idir(7) = I(ro)e"(rr) ( 1a)

thermal version:
T (I lb)

JdiT(t) = (1- coo) fB6 (-t',T)e-( rl)dtD
0

which are identical in formn to what we termed the direct contributions discussed in [1].
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The differential expressions of eq. 9 can be converted to integral expressions by formally
integrating both sides of the equations. Following the usual procedure, we first multiply each
side by an integrating factor of the form e+• and then integrate along an arbitrary path whereupon
we have, from eq. (9a), after some slight rearrangement,

S +AT(. .) t

( (2a)
Ju~Le

t + I(¶r')e" ]dt' = (oo fJsrc(,)e~'dr'(1afl dr'
o 0

or

dt' f JCt(,)e,'d, (12b)
0 0

where, in the second expression, the term on the left side follows directly from the chain rule for
differentiation and can be integrated immediately to yield

optical version:

1(t) = Ioe- T + .o0 Jext(¶')e-(-')dx' (13a)
0

where we have performed the (trivial) integration on the left side of eq. (12b) and divided
through by the integrating factor, et . Written as such, eq. (13 a) is the integral form equivalent of
eq. (9a). The treatment for the thermal version proceeds in the same manner and ultimately leads
to

thermal version:

I(xt) = (1- o0o) JB(X, T)e-(`-")d-c' + o~o fJint( )e dxI (13b)
0 0

which accounts for all radiance emanating from the aerosol cloud and does not include the direct
contribution from the target which has already been accounted for in the "optical" version. We
can think of the first term on the right side of eq. (1 3b) as a direct (emissive) component
accounting for all direct (aerosol) emissions along the path, very much analogous to the (hard
target) direct term of eq. (13a). Equations (13 a) and (1 3b) are valid for any geometric shape and
form the basis for the multiple scattering solutions throughout our previous work in [1].

Although we have focused here on (natural) thermal emission, it turns out that the derivation can
also be applied to the more general case treating any (artificial) embedded source of arbitrary
form. The derivation is similar to that described above except that we need not necessarily be
concerned about the condition of thermal equilibrium. Thus we recast eq. (4) in a more general
form as

1 diemb = j eb(r) (14)

C(r) dr
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where jemb is referred to as the "emission coefficient" and may or may not be a function of the
cloud temperature. In eq. (14) we have used the subscript "emb" to stand for "embedded"
sources following the general ideas of the classical texts. We can now retrace the steps leading to
eq. (13) and introduce one more expression to address the general emissive case as

embedded sources:

1 (15)
I(t) = fJembj(¶')e- dc' + co . Jemb(T')e `)d'(1

0 0

where jemb(T) is some, as yet unspecified, function serving the same purpose as the direct
emissive component in the thermal case and Jemb('r) is the multiple scattering contribution. In
section 4 we will test eq. (15) and compare with the classic results of Van de Hulst [5].

3. Gaussian Cloud Formulation

In this section we develop the "standard" Gaussian cloud formulation used in the source function
calculations. The main objective is to develop the analytical expressions needed for calculating
the optical thickness, r(r,ro) , between any two points, r and ro, assuming a Gaussian aerosol
cloud centered at the origin as sketched in figure 2. With reference to figure 2, the task is to
calculate the optical thickness along the dashed path beginning at some arbitrary point r and
proceeding outward to the practical "edge" of the cloud indicated by the dashed arc at ro, which
corresponds to Ro, the cloud "practical" radius.

X" ...................

. .... . . ......... ........

%It

r r.

r 
\V 

o

Figure 2. Sketch of Gaussian cloud formulation and nomenclature.

For a constant mass extinction coefficient, cc, it follows from the definition of eq. (10) in the
previous section that the major computational burden lies in computing the path integrated
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concentration, or "CL Product," which, for the case of a Gaussian concentration distribution, is
written as

r0 r

CL(r,ro) = JC(r')dr'= - Qo exp-[- ]2dr, (16)
r (liO'o)3 r -52ao

where, as noted in figure 2, the point indicated by the vector, r' also corresponds to a vector
distance x' from the integration starting point.

From simple vector geometry and figure 2 we have [r'=r+x'], which we next substitute into
eq. (16) to yield

CL(r,r0 ) _ Qo exp-[ x dx' (17)

where we have also made explicit the fact that the integration proceeds along the straight line
path, x', starting at x'=0 and ending at x'=xo, as indicated in the sketch of figure 2. In eq. (17),
the parameters Q0 and co are known constants representing, respectively, the cloud total mass
(grams) and the Gaussian half width (meters) and are determined in a manner described later in
this section.

The next objective is to express eq. (17) into a more workable scalar form. We do this by first
expanding the exponential argument in the above expressions by applying simple vector
geometry to obtain the following:

r'2 = [r + X] 2

=1 r 1 2 +2rx'(i x V) (18)

= x' 2 + r 2 + 2rx'[t
= (x' + g~r)' + r 2(1- t2)

where [t is the cosine of the angle between the radial vector, r, and the propagation vector, x' (or
x., since the two are collinear). The form of the last expression in eq. (18) follows from simple
geometry with some minor manipulation and can be verified by direct expansion.

We now rewrite eq. (17) with the aid of eq. (18) into a more workable (scalar), form for
subsequent integration as follows:

7



Qo Xex p (x-[rY + r2 (1- )

r r exp(•l)- (0l2-X0[)tr 2 ]dx '
(I_ a 201 2oQto r -pr r.~a.

=C1 c exp[-(x +ir2 ]dx' (19)

where we have made explicit the fact that the expression as now written is dependent upon the
scalar variables (r,ro,,g). The constant, C1 , turns out to be numerically equal to aerosol mass
concentration at the integration starting point [i.e., CI=C(r)] and can be calculated accordingly. It
is of some importance to note from the form of eq. (19) that the final integrated result is
dependent only upon the relative angle, g, and the scalar distances (r,xo) where x, is the total path
distance [xo 2-r 2+r,2]. This fact was found to be important in applying the mathematics for
evaluating the source function in [1].

Following the usual approach we next introduce the intermediate variable, t' 2=(x'+[tr)2/2yo2 ,
allowing us to compress eq. (19) into the following form:

to

CL(r,,r 2; g) =Via0 Cl Jexp[-t'2]dt' (20)
t

where we have also substituted, dt'=dx'/2ao. The major advantage gained from all this
manipulation lies in the fact that the integral in eq. (20) can now be expressed in terms of the
well-known error function and can thus be integrated immediately as follows:

to t

CL(r, r. ;[) = -1i2oCY { fexp[ - t' 2 ]dt'- Jexp[-t'2 ]dt'}
0 0

= /72ao C, {erf(t.) - erf(t)} (21)
... xo +jpr. _ _r( _ )

=CL.erf( { 0 - -+ e(
Vi2a 0  G~a 0

where CLo is a another constant (CLo = V a2a2Cl) which turns out to be numerically equal to

the total "center-to-edge," or CL radial path and will be discussed more fully in the following
paragraphs.

The error function as used in eq. (21) is defined formally for our applications in the usual
notation as

8



erf(x) = T dt' (22)
0

which can be evaluated readily using any of a number of numerical approximations described in
the standard handbooks [7].

In actually applying the above formulation to the task at hand, all calculations are performed on a
"standard" cloud of fixed radius Ro representing the "practical" extent of the Gaussian cloud
(which strictly extends to infinity). For practical purposes we arbitrarily define the edge as the
point where the concentration drops to 1/1000 of the value at the centroid. We furthermore
define the total mass of this standard cloud such that the total edge-to-edge CL path, or "CL
diameter," calculates to unity. After some manipulation, this leads to the following values for the
"standard" cloud:

ao = Ro/ 2Ln(1000) =13.452 (23)

Q0 = 27ta 2 /(erf (R0 / 1a) = 1350.0

where the numerical values shown correspond to calculations performed using a cloud of one
meter diameter [i.e., R&=Do/2=0.50(m)] and are the actual values used throughout the
calculations. With the Gaussian parameters so determined, the calculation of the CL Product
over any path inside the cloud is readily found from eq.(21) from which the optical thickness is
then simply

"r(r"o;t) = aCL(r,ro;[t) (24)

which follows directly from the defining equation, eq. (10), of the previous section.

It is important to note from eq. (24) that we can vary the cloud optical thickness in either of two
ways: (1) either by changing the optical variable, a, or (2) by changing the cloud concentration
through the Gaussian parameters Q0 or ao. It turns out that these two methods are totally
equivalent and are part of the basis for the optical thickness (not r) being the "real" independent
variable for the optical calculations. This means that once we have done the calculations for our
"standard" unit cloud, the results are valid for any cloud of the same optical depth, regardless of
the spatial extent-a circumstance that makes the formulation much more universal than it might
at first appear.

To summarize this section we show a numerical example in figure 3 of some edge-to-edge cross-
sectional plots of concentration and CL Product for our standard cloud using the parameters of
eq. (23) assuming a unit cloud diameter (i.e., Ro=D/2=0.50).

9
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Figure 3. Example of optical and spatial representation for Gaussian cloud.

Referring to the upper two plots of figure 3, those on the left are based upon the usual spatial
representation where the abscissa represents linear distance referenced from the (left) edge of the
cloud and passing and through the cloud centroid. The plots on the right represent the same
numerical data, but we use the CL Product as the abscissa instead of the spatial distance. Note
that we label the axes as either normalized spatial distance (d/do) or normalized optical distance
(T/To). In both cases the curves labeled (a) represent the concentration (normalized to unity at the
center), the curves labeled (b) represent the CL Product referenced to zero from the left edge, and
the curves labeled (c) represent the "radial" CL Product reference to zero at the midpoint. Note
from the plots the obvious radial symmetry with the concentration maximum at the center and
the CL Product rising from a value of zero at the left edge to a value of 0.50 at the center and
finally to a value of unity at the right edge. The radial CL Product is zero at the center and
increases to a maximum value of 0.50 toward either edge. Clearly, in the plots on the right the
optical thickness appears as a straight line as it must and the concentration plot is much broader
in appearance.

In the lower plots of figure 3, we show another example in how the choice of representation
affects the appearance of the source functions described in [1]. The particular examples shown
here represent the emissive source function based on a cloud optical thickness, or "optical
diameter," of unity (i.e., 'r0==l). The various curves in each plot represent albedo ranging from
zero and increasing to unity in the direction shown. Clearly, the main difference between the two
representations is that the optical version produces generally broader plots than the spatial
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versions and might offer some analytical advantages. Our experience is that the optical

representation is more natural and is usually easier to work with analytically.

4. Radiance Distribution in Gaussian Clouds

In our main paper we made mention that the behavior of the reflectivity functions could lead to
some interesting effects on cloud images. In particular the fact that the reflectivity functions
show a maximum at moderate optical thickness can lead to an edge brightening under certain
conditions that is often observed for natural clouds at visible wavelengths. Some insight into how
this comes about can be gained by looking more closely at the various relationships existing
among the transmissivity, taer, emissivity, Saer, and reflectivity, raer, functions, especially the
continuity relationship, which we rewrite here as

tare (T) + Eaer(t) + raer(1)=1 (25)

which is valid for any path through an isothermal cloud.

We demonstrate these relationships in the two-dimensional arrays of figure 4 which were
generated by applying eq. (30) of our main paper along multiple parallel paths traversing the
entirety of a Gaussian cloud. In constructing figure 4, we assumed a 100 by 100 m Gaussian
array of 1 mn resolution and standard deviation, o7, of 30.0 m. In figure 4 the first three columns
refer to transmissivity, emissivity, and reflectivity, respectively, as calculated using the source
functions for an isothermal cloud. Each row in figure 4 corresponds to a specific edge-to-edge
centerline optical thickness ranging from T=0.50 (upper row) to T-=8.0 (bottom row) as indicated
in the side margins. Out of curiosity we have also included, in the last column, a difference array
between the emissivity and reflectivity, which according to the continuity condition, should be of
the form [1-e']. In all cases the albedo is set to coc=0.50.

S~11
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Figure 4. Two dimensional arrays of transmissivity, emissivity and reflectivity.

In analyzing the results of figure 4, the transmissivity (first column) and emissivty (second
column) trends are the most easy to interpret in that they show a general monotonic increase in
magnitude with increasing optical thickness, which also gives rise to an apparent increase in the
perceived "size" of the resultant cloud. The reflectivity (third column) shows a similar increase
with increasing optical thickness but not nearly as marked as is the case for emissivity. This
difference in cloud "brightness" occurs in spite of the fact that the (single scattering) albedo of
0.50 indicates equal fractions of absorption and scattering at the particle level. The most curious
feature in figure 4 is the appearance of a darkened center for the reflective case that becomes
more and more pronounced as the optical thickness increases and is perceived as an actual
decrease in reflectivity at the center. This "darkening" effect is real and is related to the
maximum in reflectivity discussed in our main paper, but is more easily explained as a
manifestation of the continuity relationship.

We probe this "brightening" effect more quantitatively in figure 5 where we show side-by-side
cross-sectional plots of emissivity and reflectivity for a wide range of situations.
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Figure 5. Cross-sectional plots of transmissvity, emissivity, and reflectivity.

The plots in figure 5 show results of calculations for both emissivity (left) and reflectivity (right)
for three values of albedo: .90 (top), 0.50 (middle), and 0.10 (bottom). Each subplot includes 11

curves representing optical thicknesses ranging from 0.125 to 10.0 which occur in an increasing
monotonic order with the exception for the center values in the reflective case. In figure 5. the
general trend for the emissivity curves is toward a monotonic increase in emissivity with

increasing optical thickness which holds for all albedos. It is also generally true from the three
examples that the effect of an increased albedo is to lower the emissivity (note y-axis scales).
There is also a tendency for the emissivity curves to "flatten out" and mesh together as the
optical thickness increases, an effect that is more and more pronounced as the albedo decreases,
and in the extreme gives rise to a broad maximum in the curves which mesh toward unity at the
highest optical thicknesses. The reflectivity curves show a similar behavior except that the effect
of albedo is reversed in the sense that an increased albedo gives rise to a higher reflectivity (note
y-axis scale changes), and the curves not only tend to "flatten out" but actually decrease in the

center as the optical thickness increases beyond a value between about 1 or 2. From figure 5, the
effect becomes more and more marked as the albedo decreases. This decrease in the center, also
evident in figure 4, is often perceived as an increase at the cloud edges often observed in natural
clouds in the sunlit sky and has also been observed in single scattering models at visible

wavelengths [8].
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5. Verification of Pilot-Ex (Isothermal Plane Layers)

Although the main emphasis here is on finite clouds of spherical symmetry, it turns out that the
multiple scattering method described in our earlier paper also applies to plane layer symmetry for
which there are other studies to compare results, the most comprehensive being the extensive
tables published by van de Hulst [5]. Our purpose in this section is to use the plane layer results
as a verification of our method for computing the emissive and reflective source functions. As it
happens, there is actually very little data for direct comparisons of the source functions, per se;
however, there are extensive tables for the integral quantities, like reflection and to a lesser
extent emission, which will be main basis for the comparisons. A sketch of the relevant geometry
for the plane layer is shown in figure 6.

I U

Figure 6. Sketch demonstration Plane Layer nomenclature.

For the plane layer case we need only replace the three-dimensional Gaussian concentration
functions with the more easily treated one-dimensional form, which ultimately results in the
following simple expression for the slant path optical thickness:

x(z, t) = T, W)(26)
u

where "i(z) [=,r(z, 1)] is the optical depth measured over the vertical spatial distance, z, and u
[u=IptI], is the absolute value of the cosine of the slant path angle (fig. 6). For this study the
vertical optical depth is modeled as a Gaussian function with the centroid at the vertical midpoint
of the layer and again is based on a "standard" cloud with parameters selected such that the
vertical edge-to-edge CL product taken through the entirety of the layer calculates to unity.

It follows directly from inspection of eq. (26) that the condition of azimuthal symmetry holds so
that we can apply the methodology of section 3 in our previous report. It also turns out that for
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the plane layer case the (numerous) angular integrations can be performed analytically by
employing the Exponential Integral,

+1

I= Je-•/du = E 2(t/u) (27)
-1

where E2(x) is the well known second order Exponential Integral which was evaluated using
established numerical approximations [7]. Other than Eq. (26) and (27) there were no other
substantive changes needed to address the plane layer case.

In figure 7 we show the results of calculations for the plane layer using the same general scheme
that was used for the spherical clouds in our earlier work (fig. 5) [1]. The calculations are based
upon the normalized source functions and thus vary in overall magnitude from zero to unity. The
abscissa, for the plane layer case, is the edge-to-edge, or better, "top-to-bottom" normalized
optical thickness referenced along the vertical from top to bottom.

- REFLECTION~ EMISSION
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Figure 7. Source functions for plane layers: (a) reflection, (b) emission.

The layout in figure 7 is identical to that of figure 3 and show the reflective case on the left and
the emissive case on the right. For each case there are six subplots corresponding to six values of
cloud total optical thickness ranging from t0=0.250 to 8.0, as indicated on the figures. The
various curves in each subplot correspond to albedos ranging from zero to unity in steps of
Ao=O. 10 and, as before, either increase in overall magnitude with increasing albedo (reflective)
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or decrease in overall magnitude with increasing albedo (emissive), as indicated by the direction
of the arrow on the uppermost plots. The calculations were performed over a vertical path (i.e.,
[t=l) so that the comparisons with the spherical results (taken along the cloud centerline) are on a
common basis as far as the total path optical thickness is the concern.

In comparing with the spherical case, we note from figure 7, the same general "flattening" of the
source functions for lower optical thickness, and conversely, the increased curvature as the
optical thickness increases. In all cases, the reflective curves are concave upward and the
emissive curves are concave downward as they also are for the spherical case. It is evident from
comparison with figure 5 and our earlier work in [1] that there are no qualitative differences
between the plane layer solutions and the spherical solutions. In fact, there are very little
quantitative differences at small optical thickness where all solutions converge to the first order
result (i.e., curves are flat). At the higher optical thickness, however, the plane layer curves are
significantly lower than for the spherical case as one might intuitively expect.

It turns out that there are relatively few cases where we can directly compare the source
functions, per se, with results from the literature; however, there are extensive tables for
comparing the integral properties such as reflectivity which we show in table 1 for the special
case of normal incidence (i.e., ji=l). The comparisons in table 1 all address the plane layer case
using results from either the methodology of our previous work (labeled Ref. 1) or results from
table 12 of the Van de Hulst text (labeled Ref. 4).

Table 1. Comparison of calculated reflectivities for normal incidence with plane layers.
REFLECTION

R(t,1) wo--0.99 wo=0.80 wo=0.40 wo=0.20
Tau Ref. 1 Ref. 5 Ref. 1 Ref. 5 Ref. 1 Ref. 5 Ref. 1 Ref. 5

.03125 .03044 .03054 .02426 .02426 .01178 .01178 .00581 .00582

.06250 .05990 .05990 .04723 .04723 .02246 .02246 .01096 .01097

.12500 .11606 .11605 .08978 .08978 .04119 .04119 .01978 .01978

.25000 .21806 .21806 .16305 .16305 .07046 .07046 .03299 .03295

.50000 .38644 .38581 .27139 .27139 .10648 .10647 .04808 .04808
1.00000 .61602 .61602 .38439 .38437 .13056 .13055 .05637 .05636
2.00000 .82786 .82785 .41663 .41655 .11971 .11966 .04980 .04977
4.00000 .90228 .90221 .34105 .34079 .09234 .09221 .03847 .03841
8.00000 .85092 .85148 .29033 .28956 .08403 .08364 .03551 .03531

Before proceeding there are some potentially confusing circumstances that need to be cleared up
when comparing with the Van de Hulst results. That is, in the Van de Hulst text, the "reflection"
function, as we define it here, is separated into two components: one labeled transmission,
T(T,u), for general downward (sky-to-surface) diffuse propagation and another labeled reflection,
R('ru), for general upward (surface-to-sky) diffuse propagation. This is a convention dating from
early astrophysical studies based on planetary plane layers as viewed inward. Furthermore, the
Van de Hulst transmission function includes a direct component, e-" , that we need to subtract out
to make the comparisons valid. One needs also to be cautioned that all results here pertain to
Lambertian sources over the full 4n upper and lower hemispheres as the driving terms. That is,
the relationship between our reflectivity, raer, and the Van de Hulst functions are as follows:

r..er (t, u) = R(-r, u) + T(,r, u) - et (28)
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where the R('r,g) and T(-r,t ) values are found under the heading of "Lambertian sources" in
table 12 of the Van de Hulst text. We also note that the Van de Hulst tables refer to "intensities"
referenced outward as calculated assuming unit input and are equivalent to our "normalized"
source functions. The results here all pertain only to reflection since this is the only case reported
in the Van de Hulst tables; however, there are some indirect graphical data for emission which
we address later in this section.

Looking now at the numerical results of table 1, we see clearly that the comparisons between our
work and Van de Hulst are quite favorable, showing discrepancies of less that 0.10 percent in
almost all cases with the larger exceptions occurring only at the very highest optical depths
where multiple scattering effects are most significant. Later studies verified that these disparities
could be further diminished by using a higher spatial resolution in the numerical integrations,
using a lower threshold for convergence, or both. Overall the results here are qualitatively similar
to the spherical case, as one should expect. In particular, looking carefully at the numerical
results of table 1 we see that all values tend to monotonically increase and reach a maximum
somewhere between x=2-4 beyond which the values again decrease. This peak in the reflection
curve is very similar to that found for the spherical case discussed in the previous section.

In passing, it also needs to be pointed out that the use of the analytical form of eq. (27) to
perform the angular integrals was more of a necessity than a simple convenience because it
turned out that the use of "brute force" numerical methods were extremely inefficient and in
many cases required angular meshes on the order of milliradians to obtain the highest accuracies.
This problem was of great practical concern and was completely resolved by using the
Exponential Integrals of eq. (27). In any case, based upon the comparisons here there seems to be
little doubt as to the validity of our approach-at least on matters pertaining to reflection.

In addressing the emissive case, Van de Hulst has taken the related approach, which we referred
to as "embedded sources" in the discussion leading to eq. (15) in section 1. In this case there are
no extensive tables with which to compare our results; however, Van de Hulst does give one
graphical example demonstrating the angular dependence which we can relate to our case of
reflection and emission. The relevant expressions for comparison in the plane layer case are as
follows:

Iof (T,u) = JJff[TO0,•o,; (z)]e-'(z)/udtr (29a)
0

to

temb('',U) = fJemb[¶o,(o ;'lT(z)]et(z)/udtI (29b)
0

where u is the absolute value of the viewing angle cosine and z is vertical distance (fig. 6). The
source functions are normalized to unity for the case of reflectivity and, equivalently, to a
uniform unit embedded source for the case of emission as described by Van de Hulst.
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Figure 8. Relative intensity functions for plane layers: (a) reflectivity, (b) emission.

Results of comparisons for a single case (r0=l) are shown in figure 8. The upper curves in
figure 8 refer to the normalized source functions and are added here only for convenience to the
reader; however, it should be noted that the emission functions here are not normalized to unity
and that the ordering of the emissive curves are not inverted as they were for the case of (natural)
thermal emission. This latter circumstance is due primarily to the absence of the prefactor (1-coo)
in the definition of eq. (29b).

In the lower plots of figure 8 the abscissa for both cases is the slant path angle cosine, la, and, as
before, the various curves in each of the two subplots refer to cloud albedo. Note again that, as in
the upper plots, the ordering of the curves for reflection and emission are the same; that is, both
increase with increasing albedo. The smooth curves in figure 8 were all generated using the
PILOT-EX methodology as modified to treat embedded sources. The discrete data points for the
reflective case were obtained directly from the Van de Hulst tables using eq. (28) and those for
emission were obtained directly from the plots of figure 9.14 in the Van de Hulst text.

For the reflective cases (lower left plots), it is significant that all curves exhibit a monotonic
decrease in reflectivity as the zenith angle cosine increases. For example, in the conservative
case, the curve begins with a value identically equal to unity at u=0 (horizontal propagation) and
eventually decreases to a value of around 0.610 at u=1 (vertical propagation). This general
behavior is characteristic of all curves and should be expected since, according to eq. (26), the
slant path optical thickness ('r/u) approaches infinity as u approaches zero and decreases as the
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slant angle decreases. As the albedo decreases, the curves all decrease in magnitude and tend to
"flatten" and become nearly independent of angle at the lowest albedo.

For the emissive cases (lower right plots), the curves are similar to the reflective case in general
behavior except for the curious maxima that occur in the proximity of g=0.2 [0=780] which is
most pronounced at the higher albedos. Again, as the albedo decreases the curves tend to
decrease in magnitude and flatten out as was also seen for reflective case. Although it may not be
obvious from the plots it does turn out to be a fact that the embedded source results can be
related to emissivity through a scaling factor of the form (1-%o). We have made use of this fact in
table 2 where we again summarize results in numerical form for both the reflective and emissive
cases.

Table 2. Comparison of calculated reflectivities and emissivites for various slant angles.
REFLECTION
R(t,l) wo.99 wo=0.80 wo=0.40 wo=0.20 0

u Ref. 1 Ref. 5 Ref. 1 Ref. 5 Ref. 1 Ref. 5 Ref. 1 Ref. 5
.00010 .97924 .97960 .66525 .66973 .26169 .26639 .12012 .12286
.10000 .97676 .97675 .63523 .63518 .23206 .23272 .10331 .10329
.30000 .94032 .94032 .59302 .59300 .20536 .20534 .08941 .08940
.50000 .84281 .84281 .52782 .52778 .18048 .18046 .07815 .07814
.70000 .74104 .74103 .46300 .46298 .15765 .15763 .06814 .06813
.90000 .65373 .65373 .40804 .40803 .13868 .13867 .05989 .05988

1.00000 .61602 .61602 .38439 .38437 .13056 .13055 .05637 .05636

EMISSION
E(tl) wo=0.99 wo=0.80 wo=0.40 wo=0.20

u Ref. 1 Ref. 5 Ref. 1 Ref. 5 Ref. 1 Ref. 5 Ref. 1 Ref. 5
.00010 .02075 .02040 .33475 .33027 .73831 .73361 .87988 .87714
.10000 .02320 .02320 .36473 .36477 .76790 .76723 .89664 .89666
.30000 .02400 .02401 .37130 .37133 .75896 .75899 .87492 .87493
.50000 .02185 .02185 .33685 .33688 .68418 .68420 .78652 .78652
.70000 .01931 .01932 .29734 .29737 .60270 .60272 .69221 .69222
.90000 .01707 .01708 .26276 .26278 .53213 .53214 .61092 .61093

1.00000 .01610 .01610 .24773 .24775 .50156 .50157 .57575 .57576

In table 2, the upper set refers to reflectivity and lower set refers to emissivity using either our
methodology and eq. 28 or the angular dependent tables of Van de Hulst. The study variables in
this case are the slant angle and albedo for a single cloud optical thickness of unity. Examination
of the results again show near perfect agreement with the largest errors occurring at the lowest
angles which is a result we may expect due to the very high slant value optical thickness, which
complicates the multiple scattering solutions.

Taken together, the comparisons here for both reflection and emission are favorable and strongly
support the validity of our approach. We have other anecdotal and qualitative evidence from the
literature on both cylinders and optically thick spheres that also tend to support our conclusions,
but nothing as extensive as the Van de Hulst study.
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6. Bandpass Functions and Apparent Temperature

It has been assumed throughout that the bandpass functions introduced in [1] take care of all the
conversions from temperature to (thermal) radiance and vice versa. That is, for any real,
calibrated, radiometric measurement, in the absence of any emissive or obscuring effects, the
sensor signal responds in accordance with the following expression:

Jff (X)B(X,T)dX

Bx (T) =- (,-,)• = F~x (T) T-4 (30)

SB(X,T)d?, 7C

0

where X is the wavelength within the specified window, AX, and fNX(X) represents some specified
instrument bandpass "filter" function. Other quantities are the Stefan Boltzman constant, a, the
(absolute) real thermodynamic temperature of the target surface, T, and the Planck Blackbody
function, B(X,T). For an infrared sensor, eq. (30) produces a one-to-one correspondence between
sensor signal and surface temperature, provided that the underlying "target" is a Blackbody of
uniform temperature and there are no intervening emissive, atmospheric, or obscurant effects.

To illustrate, in figure 9, we show plots of eq. (30) for several idealized bandpass functions of
practical interest, including the full spectrum case, [i.e., fa( k) 4 for all X], for which the
expression reduces to the familiar Stefan-Boltzman Equation [i.e., B* (T) = WT /k].
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Figure 9. Bandpass functions: radiance, left; thermal derivative, right.

In making the plots of figure 9 we have modeled the filter function, fA)x(X) as an idealized unit
rectangular step function over the specified window (AX), as indicated on the figures. The plots
on the left are the bandpass functions and those on the right are the corresponding "thermal"
derivatives used in defining the "radiation contrast" that will be explained more fully in a later
section. In all cases, the mathematical calculations were performed using the semi-analytical
methods described in the SPIE (International Society for Optical Engineering) Handbooks [9]
and are accurate to within 0.01percent for the range of temperatures shown. For ease of
explanation we have assumed that the idealized instrument has been calibrated against a
Blackbody target so that any instrumental artifacts are either compensated or otherwise removed
[10]. Thus, with an instrument so calibrated, it is possible, in principle, to convert the measured
signal to the target temperature using the inverse of eq. (30), or graphically using the plots.
Conversely, if we know the target temperature, we can immediately determine the corresponding
radiance using either the graphs or eq. (30) in the forward mode. Thus we can think of the plots
as a "calibration" function for converting radiometric measurements to temperature and vice
versa as long as the "targets" are blackbodies and there are no intervening atmospheric or aerosol
effects.

To include the effect of a "hard target" emissivity, the conventional approach is to define an
"apparent" temperature [11] such that the total energy in the bandpass is the same as that in the
reduced signal. That is, we form the following "energy balance," accounting for both direct
emissions from the target and any reflections from the ambient surroundings, as
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0 Co Co

Jff (X)B(X, T~t") = 6tgt Jfa (X%)B(X,Ttgt)d? + r,,, Jff ()B(X,Txt )dX (31)
0 0 0

where T*tg is defined as the "apparent" target temperature and Ttgt is the corresponding real (i.e.,
thermodynamic) target temperature. Other terms in eq. (31) are the target emissivity, Ftg, the
target reflectivity, rtgt, and the apparent ambient temperature, T*ext, which determines the
magnitude of incoming irradiance from the ambient (sky and surface) surroundings. Note that
here and throughout we adopt a notation wherein the superscript (*) denotes apparent
temperature.

Ignoring reflections for the moment, it is clear that the effect of emissivity is to cause a uniform
signal reduction across the spectrum and is quite different than that of changing the temperature
which actually causes a non-uniform change in the underlying spectrum as well as a reduction in
the overall signal magnitude. The situation is illustrated in figure 10 where we have plotted a
series of spectra corresponding to various apparent temperatures on the left and the
corresponding energy equivalent spectra of the emissive counterparts on the right. For
convenience we use the "fuill spectrum" relationship (i.e., Tapp = 81/4 Treal).
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Figure 10. Spectral plots to demonstrate concept of apparent temperature.

A subtle but significant difference in the two sets of curves is the shift of the maximum to longer
wavelengths in the left set but a simple multiplicative effect for each curve on the right set. This
inconsistency is a consequence of the definition of apparent temperature that can cause problems
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in applications where it is critical to determine the actual value of the (real) temperature. For our
application however, we are ultimately concerned only with measured radiant energies for which
this inconsistency is not a major concern.

The question now arises as to how to treat the received signal in the presence of an obscuring
aerosol which we assume can either reduce or enhance the received signal due to the actions of
extinction, emission, and ambient in-scatter plus the possibility that the cloud, background, and
target temperatures may all be different. Ignoring for the moment, the effects of emission and
scattering, it is clear that the effect of direct (Beers's Law) signal attenuation can be treated by
extending the usual definition to include a further signal reduction in the "energy balance"
relationship as follows:

Jfto(X)B[R, T* (r)]=taer (t){ffJx(X)c tgtB(X,Ttgt)dX + ffJX (X)rtgtB[X,,T*,x]d•X} (32)
0 0 0

where taer (T) [=e-T] is the cloud transmissivity and, T*tgt (,r) is the target apparent temperature as
sensed through an obscurant of optical thickness (,r) and, for the moment, accounting only for the
direct attenuation. Thus, the treatment for transmittance is similar to that for "hard target"
emissivity and the combined effect of both is multiplicative. Note, too, that this "apparent" target
temperature is the radiative temperature that would actually be sensed by an instrument
calibrated against a Blackbody.

The inclusion of the effects of the aerosol emissivity and reflectivity is treated independently, but
in a similar manner. That is, accounting for the total diffuse (path) radiance from the cloud, we
form the appropriate energy balance to define the apparent cloud temperature, T*cld(t), analogous
to the apparent target temperature, as follows:

ffx (0)B[k, Tcid (')] = Eaer (1) JffA (X)B(X, Tc 1d)dX• + ra.er (t ) Jf, (X)B(X, T, xt)dk (33)
a o 0

where Caer(T) and raer(lt) are, respectively, the aerosol emissivity and reflectivity as defined in
previous sections, ToId is the real (thermodynamic) temperature of the cloud, and Text remains as
defined in eq. (31). Note that the above expression defines the apparent cloud temperature only,
not including the "target" contribution.

We now define the composite apparent temperature as affected by all processes by addingcontributions from both the (attenuated) target signal (eq. 32) and cloud radiance (eq. 33) and

thus obtain, for the total energy balance, the following:

Jff (X)B[X, Tea (0)] = •Jf (Q.)B[,,Tt (t)]dX + Jf, ())B[,, T2d (t)]d2 (34)
0 0 0
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where we explicitly assert that the apparent temperature in this case represents the actual
"measured" radiometric temperature, Tmea(T), as would be sensed by a real instrument. This
assertion, which may appear at first glance as a leap of faith, is clarified by realizing that the
whole derivation is based on a careful treatment of the energy balance at each step using what we
assume to be "measured" data.

Up to this point, we summarize by expanding and rewriting eq. (34) more conveniently in terms
of the bandpass functions of eq. (30) as follows:

B• [T• (x)] = taer ('t)Bý (T*,) + Ee'r (t)B (Tld) + rar (t)BX (T~x) (35)

where T*tgt is the target apparent temperature determined via eq. (31). At this point it should be
made clear that, for a given instrument specification, all terms on the right side of eq. (35) can be
obtained directly from calibration curves such as those of figure 10 (or equivalent from
numerical look up tables) using the known temperatures and the calculated aerosol properties.
The sum of all terms then gives the full signal radiance from which the apparent, or "measured,"
temperature can be obtained by inverting the process with the same calibration curve.
Alternatively we can express this intuitive process formally as,

Tm•e =B*'-(Rmea)

where (36)

R = tr (')BX (T',) + {Saer (T)Bý (Tcd) + r.,, (t)Bý (Txt)}

where the superscript (- A) represents the inverse of the function and all other quantities have
been identified in the previous paragraphs. As usual, the first term on the right side of eq. (36) is
the direct contribution and the second (bracketed) term is the diffuse contribution (also called the
path radiance in applications).

We now work an example using the hypothetical data of table 3 assuming, for convenience, a
"full spectrum" bandpass and a cloud total optical thickness of unity (i.e., ta,,=ee' = 0.368).

Table 3. Hypothetical data for bandpass example.
EXAMPLE r=1.0 units = watt/rnm Sr-'
t,,=0.368 Tcld= 40 ° C Bd-=173 ta *BJd= 6 3 .9

,ar=0.421 I T*•xt=10C BCX= 116 Eaer*Bext=48.8
r,=0.211 T*t t=200C B,=133 racr*B =28.1

Rmea =140.8

In table 3, the first two columns of data are the raw input that we have arbitrarily "made up" for
the example and the data in the remaining two columns are calculated using the methods
described above. The first step in the example is to calculate the fractional radiance, B*t,. (T), for
each of the three components. The computations can be done either graphically from the upper
leftmost plot of figure 9 or, since we are addressing the full spectrum bandpass, from the Stefan-
Boltzman analytical expression. In either case the results are as shown in the third column of
table 3. The data in fourth column represent the products of column 1 and column 3 which give
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each of the three terms on the right side of eq. (36). The resultant total measured radiance is
found by summing the final column, which yields a value of 140.8 (watt/mr2 Sr-1 ) from which we
derive an apparent temperature of 24.1 'C by the inverse procedure. Note from the example that
if we had ignored the path radiance contributions, the resultant radiance of 63.9 watt/m2 Sr1
would correspond to an apparent temperature of -29.2 'C, producing an error of -73.3 'C, which
is significant in most applications.

7. Radiation Contrast (Thermal Derivative)

It turns out that scanning systems such as a FUR (forward-looking infrared) imager are not
designed to rely upon the magnitude of a sensed signal, per se, but instead utilize the concept of
"ac coupling" which is based upon sensing incoming signal differences, or contrast. In the
analysis of these type systems it is usual to address the case wherein the sensed temperature
differences, AT, are small enough so that we can use the following linear expansion:

I(T + AT) = I(T) + dR AT (37)
dT

where I(T) and I(T+AT) represents two measured signals received from adjacent scene "pixels"
and R[=R(AX,T)] will later be identified with the band weighted blackbody function of eq. (30).
Upon rearranging eq. (37), we come about the definition for radiation contrast [9], Cr(T), or what
actually amounts to the thermal derivative, that is [11],

C(T) + I(T+AT) - I(T) Al dR
AT AT dT(3

where we have taken care to point out and make explicit that the thermal derivative is to be
evaluated at the measured temperature, Tmea (i.e., the apparent "temperature" that the receiver
actually senses), and must include the full effect of any intervening aerosols, including path
radiance. For our application, the thermal derivative can be evaluated directly from eq. (36); that
is, generalizing somewhat we have

dR ie aer (d'- Tmea + raer (0)-T- Tme3 (39)
dT T= dT T.adT dTe Tn

where, for our application, we will eventually replace the R functions with the fractional
blackbody functions of eq. (30). Our point in writing eq. (39) as such is to make it clear that if
the functional forms of R1, R2, and R3 are the same, then the three derivatives are all the same
since they are all evaluated at the same point, Tmea. Thus, when actually applied to eq. (36) we
have
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dRý" rar()dBX T
d_ = {t r() + aer () +rar (0) dT T.(40)

dB*6x(T)

dT

where in writing the last expression we have used the continuity condition [s(t)+r(')+t(t)=l] of
eq. (25) and, as before, B*(T) is the bandpass function appropriate for the particular system
under consideration. Some plots of the radiation contrast for various bandpasses of interest were
presented earlier in the rightmost plots of figure 9. It is worth emphasizing that eq. (38) applies
to the situation where the contrast is small and should not be used for situations where the
contrast is large (in which case the target is usually obvious anyway).

The impact of the radiation contrast on the actual "sensed" temperature difference can be
determined by combining the definition of eq. (38) with eq. (40) to obtain

(AI)m= dBx(T) (AT)mea = CR (Tmea)(AT)mea (41)

"dT

where (AI)mea represents the measured ac signal difference, and (AT)mea is the corresponding
equivalent temperature difference. It is also useful to apply a form of eq. (41) to the system noise
(radiance) signal, ARsys, to produce

ARSYS = CR (Tn)AT. (42)

where ATn is called the "noise equivalent" temperature differential commonly used in hardware
systems analysis.

We now see an immediate problem for the analyst because the exact measured temperature, Tmea,
is not necessarily known for these types of system since only differences are considered.
Nevertheless, the concept of sensing contrast directly is an attractive alternative in applications
because there is at least a partial mitigation of the (usually unfavorable) effects of path radiance
which comes about by differencing (see section 7). It is interesting to note, however, that the
effect of path radiance on radiation contrast can be to enhance the sensitivity. This can be seen
from the rightmost plots of figure 9 where it is clear that the radiation contrast, and thus the
system sensitivity, generally increases as the sensed temperature increases. However, this is not
the complete story since we have yet to examine the effect of aerosol induced noise, which we
will consider in the next section.
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8. Effect of Aerosol-Induced Noise

As noted in the previous section, in modeling the performance of an ac coupled system such as
the FUR, the received radiance can be modeled as the difference between two successive
samples from adjacent pixels, and one of the relevant parameters affecting system performance is
the signal-to-noise ratio, which we will derive in this section. In this case the incident "signal" in
the presence of an intervening aerosol is modeled as

AI(T1 , J 2 ) = [R(,, TImea) - RR( 2 , T 2 ,mea )] (43)

which represents the difference in the measured radiance between two adjacent "pixels" labeled
by subscripts "1" and "2." Applying eq. (36) twice for the two pixels in question immediately
yields

AI(-tr, ,r 2) = [e-J e B (t)e (T (T2,tgt)] + [Rr 1, T1,dif) - R( 2 , T 2,dif)] (44)

where we have arranged terms such that the first bracketed expression is the direct contribution
to the differential signal (i.e., ARdir) and the second represents the aerosol diffuse contribution
(i.e., ARdif), also called the path radiance.

We next follow the usual development by invoking the following approximations:

~1 2

TI,dif T2,Tdf ' Tdif

both of which may usually be justified because the two pixels are adjacent so that the optical
paths through the atmosphere are nearly the same. Applying the above approximation to eq. (44)
yields

AI(,r, J 2) = e-`[Bý (Ti*tgt) -- B (T,tgt)] + [R(r,, T,,dif) - R( 2 , T 2 ,dif )],,8t - B (T2dif(46)
=[e-Bý (T,*:tgt)-B (T;,tgt)] + [ARaer(-CTdif)]

where the second bracketed expression, ARaer(T, Tdif), represents the path radiance (difference)
contribution which, owing to the approximations of eq. (45), is assumed to be small but not
necessarily zero and not necessarily small with respect to the direct term. It is natural to take the
first bracketed term in eq. (46) to be the true difference signal (i.e., derived from that part of the
received radiance that actually originated from the target) and the remainder is taken as noise.
Thus, the signal to noise ratio becomes
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SNR( e [B(Tgt) - (T, (47)

A (aer (tTdif) + AiRsys

where we have also added a term, ARsys, to include any noise contribution from the system
hardware as is common in "clear air" studies more often addressed in the literature [11]. It is
often tempting to assume that the path radiance contributions either cancel each other, or at least
the difference is small compared to the direct term in which case the aerosol noise term can be
neglected. At certain extremes this is a valid assumption and a case that we will address later;
however, in general, it is more reasonable to assume the aerosol contribution to be proportional
to the (average) value of the magnitude of the path radiance. Thus for later reference we write

{R(,rtT dif) + R(T2,T; dif) -5R(tT~f) (48)ARaer ('r'Tdif ) C 1, 2 ,_ = , R(,Tf)48
2

where 8, is an ad hoc "weather" dependent parameter which we conjecture can range from a
value of zero for low turbulence conditions to a value on the order of unity for high turbulence
conditions. Clearly, the path radiance in eq.(48) can be written in terms of the aerosol cloud
properties as

R(t,Tif) aer(XT)BX(Tcgd) + raer(¶)B(Txt) (49)

where TcId is the cloud temperature, and T*x is the ambient radiative temperature, as defined in
connection with eq. (36) of the previous section.

Continuing with the usual development, we next invoke the "small signal" approximation which
amounts to assuming that the underlying direct signal difference is small enough such that
eq. (38) of the previous section holds. In this case we can replace the radiance differentials in the
numerator of eq. (47) with their corresponding apparent temperature differentials as follows:

B (Ttgt) - B. (T;,tgt) Cr (Tmea)(Tgt, - T;tgt) (50)

where Cr (Tmea) is the thermal derivative defined by eq. (41) in the previous section and is
evaluated at the measured apparent temperature which we will ultimately take as the average of
the two target pixels.

Making the obvious substitutions in eq. (47), we now have

SNR('t)- e-Cr,(T°)(AT). (51)
8wR(t,Td•f)+ Cr(Tn)ATn(

where we have also used the thermal derivative, Cr(Tn), to convert the system noise, Rsys, from a
radiance-based parameter to a noise equivalent temperature difference, ATn, as it is commonly
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done in systems analysis [cf., eq. (42)]. We have also substituted To for the average apparent
temperature [i.e., To=(Ti,tgt +T2,tgt)/ 2 ] and AT, as the corresponding temperature differential (i.e.,
ATo=Tl,tgt -T2,tgt).

Finally, collecting all terms and making all of the suggested substitutions, we have

SNR(r) = f e. (T0 ) } {Cr(To)(AT)} (52)
8wR(,, Tdif) + Cr (T. )AT. B- (T.)

where, for convenience, we have multiplied both numerator and denominator by the average
target radiance, B*Ax (TO). Written as such the second bracketed term in eq. (52) represents the
surface level (i.e., unobscured) radiance based contrast at the target surface (i.e., ARo/Ro) and the
first bracketed term represents a generalized version of what is sometimes called the "contrast
transmission," the reciprocal of which, for historical reasons, is referred to in the older literature
as the "sky-to-ground" ratio (although the terminology is somewhat inappropriate here).

In the limit where the aerosol noise can indeed be neglected either because conditions are such
that the parameter, 8w, is small or because the system noise, ARys, is relatively large, eq. (52)
reduces to the commonly accepted "clean air" form given by

SNR('t)AR.,,O = Ce AT' (53)
ATn

where we have assumed that the temperatures for the signal and system noise are sufficiently
close that the thermal derivatives are the same (i.e., To-Tn), an assumption which requires some
care and attention in real applications.

Another example for which we have some interest is the case of thermal equilibrium between the
cloud and the ambient atmosphere (i.e., Tcld=Text ) in which case, neglecting the system noise
term, the contrast transmission, Tco, becomes

e- () I B11 To '0/) (54)

where we have also used the general condition for isothermal clouds [c(')+r(t)=l-e" ] from
eq. (25). For the full equilibrium case (i.e., Ttgt=TcId=To), eq. (54) reduces to the well-known
classical result [(l-e-)/e', which is often used for plane layers. Thus it appears that the
development here ties together several often used approximations and offers a way to bridge the
various extremes. The problem at the moment is that the form of the ad hoc weather dependent
parameter, 8w, is not known and does not, at this period in time, appear to be tractable
theoretically. We do have an ongoing experimental effort based on (near) simultaneous field
measurements of path radiance and transmittance to shed some light on this issue [13].
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9. Temperature Stratification

In this section we extend the study to include temperature stratification in the emissive cloud
formulation. The extension is reasonably straightforward except that the definition of the cloud
emissivity is no longer consistent with basic physical principles as it was for the isothermal case.
However, this is only a minor problem that we circumvent by defining a "practical" emissivity
normalized to the maximum which, if used consistently, causes no real problem in applications
of our type. Also, for the non-isothermal case, the emissive source functions no longer mirror the
inverse of the reflective source functions as they did for the isothermal case and therefore the
general expression relating emissivity to reflectivity [eq. (25)] is no longer valid and other
fundamental notions need to be modified. However, no real conceptual difficulties exist in
actually applying the method, but the treatment is somewhat less elegant and the results a bit
more complex.

As before, the underlying equation is the thermal version of the radiative transfer equation
which, for reasons cited above, we normalize, in first order, as follows:

Jdir(x,CO7(o;T)-=Bý(T.x(1 .•) fBý[Trld(r)]e- (•'"IdT' (55)

where m and coo are, respectively, the cloud total optical thickness and albedo, t is the optical
thickness referenced to zero at the edge of the cloud (see sec. 2) and Tax is the maximum cloud
temperature which, for our hotter-than-ambient Gaussian clouds, will come about at the cloud
center.

The cloud temperature, Tcd (r), is the aerosol real (thermodynamic) temperature at a radial
distance, r, from the cloud center and is modeled in our standard Gaussian cloud as

TWId (r) = Tamb + ,, (r)(Tm.x - Tamb) (56)

where Tamb is the ambient temperature outside the cloud and pmix(r) is a "mixing factor" taken as
proportional to the aerosol concentration normalize to unity at the cloud center [i.e., Pmix (r)=
C(r)/Co] and where the aerosol concentration, C(r), is modeled in accordance with the procedures
described in section 2. It is clear from inspection that eq. (56) yields a maximum value, Tma•, at
the cloud center and drops to near ambient, Tamb, at the cloud edge. It is furthermore clear that
the overall radial symmetry is preserved so that the multiple scattering methodology described in
our previous report remains valid; thus, we can calculate the multiple scattering source function
iteratively using eq. (55) as the initial condition. Some examples of thermally stratified emissive
source functions are shown in figure 11 for a variety of cloud-to-ambient temperature
differentials.
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In figure 11, the first row of subfigures represents the isothermal case which is identical to the
corresponding plots of figure 7 but which we repeat here for reference. The remaining three rows
correspond to the various temperature differentials [AT=Tn.x-Tamb] as indicated to the right of
each row. Each of the four columns correspond to a different cloud optical thickness ranging
from -r=0.50 to 4.0 as indicated at the top of each column. Each subplot, of which there are 16
total, includes 11 curves (9 discernable) corresponding to different values of albedo increasing in
equal increments from co.=0 (extreme top) to (oo=1I (extreme bottom) following the usual
monotonic scheme used throughout.

In studying the rows and columns of figure 11, two general trends are immediately apparent as
manifested by the increased curvature, or "narrowing," of the curves as either the optical
thickness increases (along each row) or as the temperature differential increases (down each
column). There is also a small but noticeable increase in the magnitude of the source function
with increasing optical thickness, which seems to be most marked at the higher albedos
represented by the lower-lying curves in each subplot. The effect of increased temperature has
little effect on the magnitude of the source functions except at the cloud edges where the
magnitude clearly decreases with increasing temperature differential, a behavior due primarily
the normalization convention. The results support the assumption of a strong build up of internal
radiance in the center as the temperature differential is increased. From the trends shown, we
anticipate that the curves continue to narrow, as the temperature differential increases, and
eventually collapse to near delta functions at the extreme, especially at the higher values of
optical thickness.
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The general behavior of the source functions, most noticeably the build up of source radiance in
the cloud interior, suggests that the effect will, in turn, correspond to a lowering of the
emissivity. This is intuitively plausible because any source at the cloud center will necessarily
experience some "self extinction" in reaching the cloud exterior. Thus, we would expect the
calculated emissivities to become lower and lower as the temperature differential increases and
become more and more pronounced as the optical thickness increases. Some of our preliminary
calculations have borne this out; in particular we have found emissivity ratios
[E(AT-x)k(AT=0)] to be on the order of 52 percent for an optical thickness of t-=l and on the
order of 40 percent for an optical thickness of T=4, and in both cases an albedo of Oo0 =0.50.
Unfortunately, we have not yet found a way to present the results in a systematic way, but this is
a viable goal for further work. We have also looked at some data on emissive sources and do
have evidence that self extinction occurs in real smokes [15].

10. Summary

The details given here along with those also given in our companion paper [1] offer a complete
solution to the radiative transfer equation for finite aerosol clouds of radial symmetry. The
method addresses both aerosol thermal emission as well as reflection, including all orders of
multiple scattering. The method represents exact solutions that compare favorably with other
studies when applied to plane layers. We have also demonstrated the significance of the results in
systems evaluation through the effect on the thermal derivative, or "radiation contrast," used in
evaluating infrared scanning systems such as the FLIR. The methodology, per se, is applicable
only to isothermal clouds and isotropic scattering although these are not necessarily fundamental
limitations on the method. In another preliminary study we have extended the method to include
non-isothermal clouds and other practical effects using various approximations [13,14]. Other
efforts are underway to evaluate the results against field measurements [16].
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